
Exploring Stronger Feature for Temporal Action Localization

Zhiwu Qing1,2 Xiang Wang1,2 Ziyuan Huang2 Yutong Feng2 Shiwei Zhang2∗

Jianwen Jiang2 Mingqian Tang2 Changxin Gao1 Nong Sang1∗

1Key Laboratory of Image Processing and Intelligent Control
School of Artificial Intelligence and Automation, Huazhong University of Science and Technology

2Alibaba Group
{qzw, wxiang, cgao, nsang}@hust.edu.cn

{pishi.hzy, yutong.fyt, zhangjin.zsw, jianwen.jjw, mingqian.tmq}@alibaba-inc.com

Abstract

Temporal action localization aims to localize starting
and ending time with action category. Limited by GPU
memory, mainstream methods pre-extract features for each
video. Therefore, feature quality determines the upper
bound of detection performance. In this technical report, we
explored classic convolution-based backbones and the re-
cent surge of transformer-based backbones. We found that
the transformer-based methods can achieve better classifi-
cation performance than convolution-based, but they can-
not generate accuracy action proposals. In addition, ex-
tracting features with larger frame resolution to reduce the
loss of spatial information can also effectively improve the
performance of temporal action localization. Finally, we
achieve 42.42% in terms of mAP on validation set with
a single SlowFast [9] feature by a simple combination:
BMN [16]+TCANet [19], which is 1.87% higher than the
result of 2020 [20]’s multi-model ensemble.

1. Introduction
Temporal action localization is a challenging task, espe-

cially for HACS dataset [27], which contains complex rela-
tionships between actors and scenes in long videos. In this
technical paper, we explore two kinds of backbones, i.e.,
Transformer-based ViViT [1] and Timesformer [3], CNN-
based SlowFast [9] and CSN [21]. From the experiment
results, we draw several following conclusions: 1) The fea-
tures extracted by the network with remarkable classifica-
tion performance may not necessarily generate high-quality
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proposals for temporal action localization. Since the action
classification task does not have to be sensitive to the back-
ground. For instance, the action that occurs on the football
field is likely to play football. The network may only fo-
cus on the football field, and there is no need for the act of
playing football. 2) Most videos are rectangular rather than
square. When training the network, the input video frames
to network are always square. If the same shape is still em-
ployed in extracting features, the spatial content will be lost
in the rectangular video frames, which is crucial for tempo-
ral action detection.

2. Our Approach
The overall architecture of our approach is visualized in

Figure 1. The video features are first extracted from video
frames by convolution-based and transformer-based back-
bones. Then the video features are employed to generate
proposals and classify action categories. Finally, the action
localization results are generated by fusing proposals with
classification scores.

2.1. Training Backbones

The existing mainstream pre-training methods can be di-
vided into two types: supervised [21, 9, 1, 8] and unsuper-
vised [13, 11]. Supervised methods can achieve stronger
performance, but need to provide labels for each video. Un-
supervised methods can make full use of unlabeled data.
We utilize the supervised strategy for pre-training to achieve
better performance.

All backbones we employed are first pre-trained on the
large-scale Kinetics-700 [7] dataset or Kinetics-600 [6]
dataset to improve the generalization ability, and then fine-
tuned on the HACS [27] dataset. We explored four back-
bones with different architectures. As shown in Figure 1,
the SlowFast [9] and CSN [21] are based on convolution,
and ViViT [1] and Timesformer [3] are based on trans-
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Figure 1. The overall framework of our approach. The input video frames are first extracted features by backbones. Then the BMN [16]
and TCANet [19] are employed to generate accuracy proposals. The video-level features are utilized to perform action classification task.
The fusion of proposals and action category generates action detection results.

Backbone
SlowFast

[9]
CSN
[21]

ViViT
[1]

Timesformer
[3]

Layers 101 152 12 12
Frames 32×2 32×2 32×2 8×32

Resolution 224×224
BS 256

Optimizer SGD AdamW AdamW SGD
LR 0.02 1e-4 1e-5 0.004
WD 1e-7 1e-4 0.1 1e-4

LR Policy Cosine
WU Epochs 5 8 2.5 1

T Epochs 50 30 30 15
Dropout 0.5 0.0 0.5 0.5

Table 1. Training details for all backbones. “LR” refers to
Learning Rate, “WD” is weight decay, “WU” means Warm Up,
“T Epochs” is Training Epochs and “BS” refers to Batch Size.

former. In fine-tuning stage, the features extracted by back-
bone are used to perform the classification task with (C+1)
categories. The fine-tuning details are introduced in the Ta-
ble 1. Note that there are differences in training settings be-
tween different models. Our training strategies are for ref-
erence only. Among them, we use open source pre-trained
models to initialize SlowFast, CSN, and Timesformer, and
only ViViT is reprodced by us. The details of pre-training
process can be referred to our EPIC-KITCHENS-100 Ac-
tion Recognition report [12].

2.2. Extracting Features

Following mainstream action proposal generation meth-
ods [16, 17, 15, 25, 10, 5, 2, 26, 19, 20, 23, 24], we pre-
extract features for each video. Specifically, for a video
which contains l frames, the whole video can be divided
into N clips uniformly. We set the stride between consecu-
tive clips to δ = 8, which can be converted to 0.267s in a 30-
fps videos. In the temporal dimension, the sampling strat-
egy for input clips is consistent with the fine-tuning process.

In the spatial dimension, the transformer-based methods
are also consistent with fine-tuning, while the convolution-
based methods utilize the resolution of 256×320 as the in-
put to extract features, which can save more spatial infor-
mation for temporal localization.

2.3. Generating Proposals

The popular Boundary Matching Network(BMN) [16]
based on dense prediction are easier to generate propos-
als with high recall rate. Combined with Temporal Con-
text Aggregation Network(TCANet) [19] to further refine
proposals, it can achieve impressive performance on HACS
dataset.

Training BMN. The video-level features(C×N ) are re-
sized to 200, (e.g. C × 200). Local-Global Temporal En-
coders(LGTEs) [19] are also inserted into the base mod-
ule in the BMN. The AdamW [18] is employed as opti-
mizer. The batch size, learning rate, weight decay and train-
ing epochs are set to 128, 0.001, 1e-5 and 10, respectively.
BMN designs Temporal Evaluation Module(TEM) and Pro-
posal Evaluation Module(PEM) to evaluate the boundary
scores and the IoU of proposals. In our implementation,
we only employ the scores output by PEM, since the output
of TEM lack global perceptions, which cannot improve the
precision.

Training TCANet. We do not resize the features to pre-
serve fine-grained temporal information. Three Temporal
Boundary Regressors(TBRs) [19] are employed to refine
the proposals generated by BMN, and the first TBR is em-
ployed to augment proposals [22] for accurate proposal dis-
tribution. Our optimizer for TCANet is Adam [14], and
the batch size, learning rate and weight decay is set to 64,
0.0016 and 1e-5, respectively. We train the models for 10
epochs with cosine learning rate schedule.

Suppressing redundant predictions. We utilize Soft-
NMS [4] to remove redundant predictions. The low thresh-
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Backbone Top-1(Val)
CSN [21] 91.54%

SlowFast [9] 90.37%
ViViT [1] 91.92%

Timesformer [3] 91.81%
Table 2. Comparison between different backbones for clip-level
action classification.

Feature LGTE [19] mAP(Val)
CSN [21] - 38.88%
CSN [21] x2 40.88%

SlowFast [9] - 38.83%
SlowFast [9] x2 39.77%

ViViT [1] - 36.63%
ViViT [1] x2 37.30%

Timesformer [3] - 32.23%
Table 3. Comparison between different features based on
BMN. The “x2” means that we insert 2 LGTEs into base module
in BMN.

Feature Resolution LGTE [19] mAP(Val)

SlowFast[9]

224x224 - 37.28%
224x224 x2 38.39%
256x320 - 38.83%
256x320 x2 39.91%

Table 4. Ablation studies for feature resolution. The resolution
refers to the input resolution of frames when extracting feature.

old, high threshold and alpha in Soft-NMS are set to 0.25,
0.9 and 0.4, respectively.

2.4. Generating Detection Results

Since the proposals output by BMN [16] and
TCANet [19] are class-agnostic, they need to be further
classified to generate detection results. Considering that al-
most all videos in the HACS dataset [27] have only one cat-
egory, we directly fuse the video-level classification results
with proposals:

Sdet = Sprops × Saction. (1)

Where the Sdet is the final detection score for submission,
the Sprops is the score for each proposal output by BMN or
TCANet, and the Saction is the video-level score for each
category.

3. Experiments
The Table 3 explores convolution-based and

transformer-based features in terms of mAP. We no-
tice that the convolution-based methods are better than
transformer-based methods for action proposals. However,
as shown in the Table 2, the transformer-based achieve
impressive performance on clip-level classification task.
This enlightens us that the classification performance of the
backbone is not always positive for proposals, especially
for Timesformer [3].

Feature Method Top-1(Val)
mAP
(val)

mAP
(Test)

ViViT BMN
94.33% 33.46% 33.04%
95.25% 33.91% 33.38%

CSN BMN
94.33% 38.88% 38.68%
96.07% 39.57% 39.26%
96.07% 41.62% 41.17%

CSN BMN+TCA 96.07% 42.74% 42.34%
C+S+V Ensemble 96.27% 44.83% 44.29%

2020 Winner [20] 94.33% 40.55% 40.53%
Table 5. Performance comparison between Validation set and
Test set on different settings. The “C+S+V” in the table refers
to CSN [21]+Slowfast [9]+ViViT [1], and the “BMN+TCA” is the
candidate proposals output by BMN [16] are input to TCA [19]
for further refine.

For LGTE [19] in the Table 4, the improvement for
CSN [21] feature is greater than the SlowFast [9] and the
ViViT [9]. For the ViViT feature, since the spatio-temporal
attention has been employed, the role of LGTE is limited.

In Table 4, we explore the influence of frame resolution
in extracting features. The 224x224 cropping area in train-
ing limits the spatial information of each frame, especially
for non-square video frames. Therefore, adopting a larger
area for cropping can improve the quality of the extracted
features. This is convenient to implement for convolution-
based networks. However, for the transformer-based net-
works with the fixed position embedding, the same resolu-
tion as the training process is still used to extract features.

In Table 5,we show the results of our previous submis-
sions. It can be noted that TCANet [19] can still achieve
1.09% improvement on the validation set, even based on a
better baseline. Finally, we fuse the confidence maps out-
put by multiple BMNs [16] and the refined proposals out-
put by multiple TCANets. Thanks to the complementar-
ity between the models trained with different features, we
reached 44.83% and 44.29% on the validation set and test
set, respectively, which was 3.76% higher than the 2020
Winner [20] on the test set.

4. Conclusion

In this technical paper, we explore different features, res-
olution, BMN and TCANet for temporal action detection.
We found that the features extracted by the network with
high classification performance may not necessarily gener-
ate high-quality proposals. This may be guiding us to de-
sign a backbone that is more suitable for temporal action
detection. The ablation studies for resolution prove that
avoiding the loss of spatial information can effectively im-
prove the performance of temporal detection. Finally, with
these strategies, our single-model suppresses 1.81% than
the multi-model fusion used by the 2020 winner.
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