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Abstract

This technical report presents our solution to the HACS
Temporal Action Localization Challenge 2021, Weakly-
Supervised Learning Track. The goal of weakly-supervised
temporal action localization is to temporally locate and
classify action of interest in untrimmed videos given only
video-level labels. We adopt the two-stream consensus net-
work (TSCN) [5] as the main framework in this challenge.
The TSCN consists of a two-stream base model training pro-
cedure and a pseudo ground truth learning procedure. The
base model training encourages the model to predict reliable
predictions based on single modality (i.e., RGB or optical
flow), based on the fusion of which a pseudo ground truth is
generated and in turn used as supervision to train the base
models. On the HACS v1.1.1 dataset, without fine-tuning the
feature-extraction I3D models, our method achieves 22.20%
on the validation set and 21.66% on the testing set in terms
of average mAP. We hope this report can serve as a baseline
for future academic research.

1. Our Solution
We adopt the two-stream consensus network (TSCN) [5]

as the main framework. It consists of two main procedures:
two-stream base model training and pseudo ground truth
learning. Figure 1 shows the framework of our method.

1.1. Feature Extraction

We construct our model upon snippet-level feature se-
quences extracted from the raw video volume. The RGB
and optical flow features are extracted with pre-trained
I3D [1]) from non-overlapping fixed-length RGB frame snip-
pets and optical flow snippets, respectively. Formally, given
a video with T non-overlapping snippets, we denote the
RGB features and optical flow features as {fRGB,i}Ti=1 and
{fflow,i}Ti=1, respectively, where fRGB,i, fflow,i ∈ RD are the
feature representations of the i-th RGB frame and optical

flow snippet, respectively, and D represents the channel
dimension.

1.2. Two-Stream Base Models

After obtaining the RGB and optical flow features, we
first use two-stream base models to perform the video-level
action classification. The features of two modalities are fed
into two separate base models, respectively, and the two base
models use the same architecture but do not share parameters.
Therefore, we omit the subscript RGB and flow to denote a
general operation for both modalities.

To embed the extracted features to task-specific space,
we use a single temporal convolutional layer with a kernel
size 3 to embed the input feature, and generate a set of new
features {xi}Ti=1, where xi ∈ RD.

As a video may contain background snippets, to perform
video-level classification, we need to select snippets that
are likely to contain action instances and meanwhile filter
out snippets that are likely to contain background. To this
end, an attention value ai ∈ (0, 1) to measure the likelihood
of the i-th snippet containing an action is given by a fully-
connected (FC) sigmoid layer. We then perform attention-
weighted pooling over the feature sequence to generate a
single foreground feature xfg, and feed it to an FC softmax
layer to get the video-level prediction:

xfg =
1∑T
i=1 ai

T∑
i=1

aixi, (1)

ŷc =
ewc·xfg+bc∑C
i=1 e

wi·xfg+bi
, (2)

where ŷc is the probability that the video contains the c-th
action, and wc and bc are the weight and bias of the FC layer
for category c. The classification loss function Lcls is defined
as the standard binary cross entropy loss.

In addition, the temporal-class activation map (T-CAM)
{si}Ti=1, si ∈ RC is also generated by sliding the classifica-
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Figure 1: An overview of the Two-Stream Consensus Network, which consists of two parts: (1) feature extraction, where RGB
and optical flow snippet-level features are pre-extracted; (2) two-stream base models, where action recognition is performed on
the two modalities with two-stream base models, respectively; (3) pseudo ground truth generation, where a frame-level pseudo
ground truth is generated from the two-stream late-fusion attention sequence and in turn provides frame-level supervision to
two-stream base models.

tion FC softmax layer over all snippet features:

si,c =
ewc·xi+bc∑C
j=1 e

wj ·xi+bj
, (3)

where si,c is the T-CAM value of i-th snippet for category c.
For better attention and T-CAM learning, we further adopt

a smooth loss, the attention normalization loss [5], a distinct-
ness loss, and a variant of the self-guided attention loss [2]
in the base model training.

The smooth loss enforces temporally proximate snippets
to give similar attention predictions, and thus helps generate
a more smooth attention sequence:

Lsmooth =
1

T − 1

(
T∑
t=2

|at − at−1|+
T−1∑
t=1

|at − at+1|

)
(4)

The attention normalization loss [5] maximizes the dif-
ference between the average top-l attention values and the
average bottom-l attention values, and forces the foreground
attention to be 1 and background attention to be 0:

Lnorm =
1

l
min
a⊂{ai}
|a|=l

∑
φ∈a

φ− 1

l
max
a⊂{ai}
|a|=l

∑
φ∈a

φ, (5)

where l = max
(
1, bTk c

)
and k is a hyperparameter to con-

trol the selected snippets.
The distinctness loss Ldist encourages the foreground fea-

ture xfg and background feature xbg to be distinct in the
feature space:

Ldist = max

(
0,

xfg · xbg

‖xfg‖‖xbg‖
−m

)
, (6)

where ‖ · ‖ is the L2 norm, and m is a hyperparameter
empirically set to 0.5.

The self-guided attention loss [2] pursues a consensus
between the bottom-up attention and the top-down T-CAM.
In our method, as we do not exploit the background classi-
fication, we discard the background modeling term in the
original guide loss. Besides, we empirically observe that the
attention tend to produce more reliable activations than the
T-CAM, and thus we detach the gradient for the attention
in the guide loss. The guide loss variant employed in our
method is formulated as:

Lguide =
1

T

T∑
i=1

|sg(ai)− si,c∗ |, (7)

2



where sg(·) denotes stop gradient, and c∗ is the ground truth
action class1.

The overall loss for the base model training is a weighted
sum of the loss terms:

Lbase = Lcls+λ1Lsmooth+λ2Lnorm+λ3Ldist+λ4Lguide, (8)

where λ1, λ2, λ3 and λ4 are weight parameters.

1.3. Pseudo Ground Truth Learning

We iteratively refine the two-stream base models with
a frame-level pseudo ground truth, which is generated by
two-stream prediction fusion. Specifically, we divide the
whole training process into several refinement iterations. At
refinement iteration 0, only video-level labels are used for
training. And at refinement iteration n + 1, a frame-level
pseudo ground truth is generated at refinement iteration n,
and provides frame-level supervision for the current refine-
ment iteration.

Speficially, we use the fusion attention sequence
{a(n)fuse,i}Ti=1 at refinement iteration n to generate pseudo

ground truth {G(n+1)
i }Ti=1 for refinement iteration n + 1,

where a(n)fuse,i = βa
(n)
RGB,i + (1− β)a(n)flow,i, and β ∈ [0, 1] is a

hyperparameter to control the relative importance of RGB
and flow attentions.

The pseudo ground truth thresholds the attention sequence
to generate a binary sequence:

G(n+1)
i =

{
1, a

(n)
fuse,i > θ;

0, a
(n)
fuse,i ≤ θ,

(9)

where θ is the threshold value.
After obtaining the frame-level pseudo ground truth, we

force the attention sequence generated by each stream to
be similar to the pseudo ground truth with a binary cross
entropy loss:

L(n+1)
pseudo =− 1

T

T∑
i=1

G(n+1)
i log

(
a
(n+1)
i

)
+(

1− G(n+1)
i

)
log
(
1− a(n+1)

i

) (10)

At refinement iteration n+ 1, the total loss for each stream
is

L(n+1)
total = Lcls + λ3Ldist + λ4Lguide,+λ5L(n+1)

pseudo , (11)

where λ5 is a hyperparameter to control the relative im-
portance of two losses. Note that we remove the attention
normalization loss and in the pseudo ground truth learning,
as the loss term assumes at least 1

k and 1
k of each video are

1If there are multiple classes contained in the video, we max-pool the
T-CAM across all ground truth classes.

actions and backgrounds, respectively. However, it does
not always hold (some videos do not contain background),
and will bring noise for the pseudo ground truth learning.
The smooth loss is also removed as it leads to trivial solu-
tion where all videos are actions without the supervision the
attention normalization loss.

1.4. Action Localization

During testing, we first temporally upsample the attention
sequence and T-CAM by a factor of 8 via linear interpolation.
Then, we select top-2 action categories from the fusion video-
level prediction ŷfuse to perform action localization, where
ŷfuse = βŷRGB + (1 − β)ŷflow. Action proposals are gener-
ated by progressively thresholding the attention sequence
from 0 to 1.0, with a step size of 0.025, and concatenating
proximate snippets. The action proposals are scored follow-
ing TSCN [5]. Formally, given action proposal (ts, te, c),
fusion attention {afuse,i}Ti=1 and T-CAM {sfuse,i}Ti=1, where
sfuse,i = βsRGB,i+(1−β)sflow,i, the score ψ is computed as

ψ =

∑te
i=ts

afuse,isfuse,i,c

te − ts
−∑Te

i=Ts
afuse,isfuse,i,c −

∑te
i=ts

afuse,isfuse,i,c

Te − Ts − (te − ts)
,

(12)

where Ts = ts− L
4 , Te = te+

L
4 , and L = te−ts. We finally

use NMS with IoU threshold 0.6 to filter out redundant
detections.

2. Experiments and Discussions
2.1. Implementation Details

The optical flow is estimated via the TV-L1 algorithm [4].
The feature-extraction backbone I3D [1] is pre-trained on
the Kinetics dataset [1], and is not fine-tuned on the HACS
dataset [6]. In this competition, we use the off-the-shelf 2
FPS RGB snippet-level features provided by the dataset [6],
and extract the optical flow features with a snippet length
of 16 frames. The majority of the hyperparameters are set
according to [2, 5]: λ1 = λ2 = λ4 = 0.1, k = 8, and
θ = 0.5. Other hyperparameters are set according to a
grid search: β = 0.6, λ3 = 0.1 and λ5 = 0.01. We use
the AdamW optimizer with a fixed learning rate 0.0005.
We train the model for a total of 5 refinement iterations,
with each refinement iteration contains 10 epochs. At each
refinement iteration, we simply select the latest model from
the last refinement iteration to generate the pseudo ground
truth.

2.2. Results

Two-stream base models. The performance of two-stream
base models w/o pseudo ground truth supervision is reported
in Table 1, where different combinations of loss terms are
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Table 1: Single-stream performance with different loss combinations on the HACS validation set.

(a) RGB stream-only localization performance.

Lcls Lsmooth Lnorm Ldist Lguide
mAP@IoU (%)

0.5 0.75 0.95 Avg
X - - - - 9.23 4.45 1.12 5.03
X X - - - 17.53 11.41 4.54 11.69
X X X - - 25.82 15.77 5.42 16.33
X X X X - 26.54 16.18 5.50 16.86
X X X X X 27.46 17.19 6.26 17.69

(b) Flow stream-only localization performance.

Lcls Lsmooth Lnorm Ldist Lguide
mAP@IoU (%)

0.5 0.75 0.95 Avg
X - - - - 5.60 2.17 0.19 2.63
X X - - - 14.47 9.43 3.40 9.64
X X X - - 19.08 11.73 4.75 12.31
X X X X - 19.24 11.84 4.83 12.40
X X X X X 19.57 12.17 4.90 12.74

Table 2: Performance w/ pseudo ground truth learning in
different refinement iterations on the HACS validation and
testing sets.

Modality
Validation Test

0.5 0.75 0.95 Avg Avg

0
RGB 27.46 17.19 6.26 17.69 -
Flow 19.57 12.17 4.90 12.74 -

Fusion 29.91 18.50 6.99 19.12 18.75

1
RGB 26.85 16.98 6.27 17.38 -
Flow 23.57 13.86 5.27 14.74 -

Fusion 31.30 19.14 6.96 19.83 -

2
RGB 30.45 18.42 6.39 19.16 -
Flow 24.09 14.39 5.43 15.16 -

Fusion 33.47 20.03 6.81 20.91 20.30

3
RGB 32.62 19.32 6.36 20.18 -
Flow 23.21 13.97 4.82 14.58 -

Fusion 35.07 20.85 6.87 21.82 -

4
RGB 33.54 19.57 6.17 20.54 -
Flow 23.12 13.74 4.50 14.38 -

Fusion 35.43 20.94 6.80 21.93 21.33

evaluated. The results show the addition of each loss con-
tributes to the performance improvement.
Pseudo ground truth learning. Table 2 reports the perfor-
mance changes in different refinement iterations. The results
reveal that pseudo ground truth consistently improves the
fusion results, and eventually saturate at the 3-rd and 4-th
refinement iterations. The pseudo ground truth also greatly
improves the single-stream models. Specifically, it improves
the performance of the RGB model from 17.69% to 20.54%
in terms of average mAP, and improves the performance of
the flow model from 12.74% to 15.16%.

Exponential moving average emsemble. Inspired by the
mean teacher [3], after the pseudo ground truth learning,
we ensemble the models from all 5 refinement iterations by
exponentially moving average their parameters with a succes-
sive weight 0.2. The final ensemble model achieves 22.20%
average mAP on the HACS validation set, and 21.66% on
the HACS testing set.
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