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Abstract

This technical report aims to illustrate the overview of
our solutions for the two tasks in HACS Temporal Action
Localization Challenge: Weakly-supervised and Supervised
Learning Track. Anchor-based and boundary-based ap-
proaches are two main categories in this field. Different
modality, such RGB images and optical flow images, also is
prone to classify different action class. Inspired by these, we
propose a multi-modal fusion network to not only explore
the complementary characteristics between the two types of
advanced approaches, but also exploit the rich information
in videos, including audio, RGB images and optical flow.
First, RapNet and BMN are used to generate anchor-based
and boundary-based action proposal separately. Then, we
fuse them for retrieving and finally combine the proposals
with video-level classification predicted by our classifica-
tion network. All methods adopted in our solution are im-
plemented using PaddlePaddle.

1. Introduction
Temporal action localization has become one of the most

challenging and promising tasks in video analytic and un-
derstanding. It is required to predict accurate start and end
time stamps of different human actions. Similar to the ad-
vanced solutions in object detection, approaches in this task
also observes the popular two-stage pipeline, which divide
the problem into proposal generation and multi-label video
classification. Due to the latter could be performed well
with convincing classification accuracy in action recogni-
tion, many recent works, including ours, focus on the for-
mer in order to generate temporal action proposals with
highly precise boundaries.

The methods in action proposal generation could be di-
vided into two categories: anchor based and boundaries
based. The former [3, 7] usually defines or clusters the
manually defined number of anchors and employs pyramid-
like neural networks for proposal generation in cope with
the various duration of actions. Boundary-based methods
[12, 8] produce candidates with high precision boundaries

by evaluating starting and ending probability on each tem-
poral location or directly evaluating confidence score on
densely distributed proposals [6].

In this report, we intend to take the advantage of these
two kind of methods. Since RapNet [3] and BMN [6]
serve as the advanced approaches in their respective cate-
gories, we use them to generate accurate temporal action
proposal for fusion. In addition, we also fully exploit the
complementary characteristics between RGB images and
optical flow images. In the following, we will introduce
the fused temporal action proposal generation method and
action classification method separately.

2. Action Proposal Generation

In this section, we will simply introduce RapNet and
BMN for better understanding. Please refer to the papers
for more details if interested.

(1) RapNet
In order to explore the ignored global contextual in-

formation in previous methods, the RapNet proposes a
relation-aware module to exploit the bi-directional long-
range relations between local features and then integrates it
into feature pyramid network for multi-granularity temporal
proposal generation. We modify the original architecture by
adding residual connection and removing the boundary ad-
justment and ranking part. Its details are illustrated in Fig.1.

(2) BMN
In order to capture rich context for confidence score eval-

uation, BMN introduce the boundary-matching mechanism
based on the densely distributed proposals. we use it to aug-
ment the proposal generated by RapNet in the fusion pro-
cessing. To further exploit ActivityNet train + validation
subsets (removing video included in HACS testing set) as
unlabeled data to train BMN in semi-supervised fashion.

After generating action proposals by RapNet and BMN,
we merge them together for post-processing with soft-
NMS. In this challenge, we extract three modalities features
with TSM [5] on RGB images, optical flow and VGG on au-
dio.
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Figure 1. The framework of our approach consists of two components according to the conventional two-stage pipeline: proposal generation
and video-level classification. First, a visual embedding network [5] is used for extracting snippet-level video representations. Then the
following temporal pyramid backbone integrated with relation-aware modules [3] aims to separately generate candidate instances with
different duration via clustered anchor. Finally, our relation-aware proposals are combined with classification predictions to perform
temporal action localization.

3. Action Classification

The existing state-of-the-art action classification meth-
ods, such as Attention Cluster [10], have leveraged at-
tention mechanism to generate final descriptor from fea-
ture sequence of a video. Though effectiveness have been
achieved, the attention schema of these models can be fur-
ther improved from the following two aspects: 1) The at-
tention granularity over different channels could be better
designed. 2) The existing attention-based local feature in-
tegration solutions have ignored temporal order which is
critical for action recognition under some circumstance.
To alleviate the aforementioned shortcomings, we propose
our Pyramid×Pyramid Attention Network, which combines
both channel pyramid and temporal pyramid.

3.1. Pyramid×Pyramid Attention Cluster

For each video, first we extract L segment features,
which are arranged in a temporal order, forming a segment
feature sequence:

X = (x1,x2, ...,xL) . (1)

3.1.1 Channel Pyramid Attention Cluster

We use shift attention (SAtt) as attention unit following At-
tention Cluster [10]. The shift attention unit essentially cal-
culates a weighted average of local features to obtain the
global feature.

y =

L∑
k=1

f(xk,X) · xk, (2)

where f(·, ·) is the weighting function defined in Attention
Cluster [10].

The Channel Pyramid Attention Cluster (CPAC) has a
total of N levels. For the n-th level, we split each local
feature into 2n−1 sub-features, such that:

x =
[
x(n)1,x(n)2, ...,x(n)2n−1

]
, (3)

where [] is concatenate, x(n)i is the sub-feature. Then we
can construct 2n−1 sub-feature sequence for the n-th level:

X(n)i =
(
x
(n)i
1 ,x

(n)i
2 , ...,x

(n)i
L

)
, (4)

where i ∈ 1, 2, 3, ..., 2n−1.
Next, we apply shift attention to each sub-feature se-

quence and concatenate their outputs together as the output
of n-th level:

y(n) =
[
SAtt(X(n)1), ...,SAtt(X(n)2n−1

)
]
. (5)

Finally, outputs of each level is concatenated as the
final output of the channel pyramid attention after `2-
normalization.

y =

[
y(1)

‖y(1)‖2
,

y(2)

‖y(2)‖2
, ...,

y(N)

‖y(N)‖2

]
. (6)

Figure 2 shows an efficient implementation of a 3 level
CPAC.
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Figure 2. Implementation of Channel Pyramid Attention Clusters:
The calculation of attention weights can be efficiently done with
1D group convolution followed by expand, reshape and softmax.
In this figure, for illustration purpose, we use 1536 as an example
channel size of local features.

3.1.2 Temporal Pyramid Attention Cluster

Temporal Pyramid Attention Cluster has M levels in to-
tal. For the m-th level, we split the feature sequence X =
(x1, ...,xL) into 2m−1 sub-sequences in temporal order:

X(m)j =
(
x(j−1)L/2m−1+1, ...,xjL/2m−1

)
, (7)

where j ∈ 1, 2, 3, ..., 2m−1.
CPACs are then applied to each sub-sequence separately,

and the outputs are concatenated as output of the m-th level:

y(m) = [CPAC(X(m)1), ...,CPAC(X(m)2m−1)]. (8)

Finally, we concatenate the outputs of all levels as the
final output of temporal pyramid attention:

y =
[
y(1),y(2), ...,y(M)

]
. (9)

Since we combine two kinds of pyramid attention on
two orthogonal dimension, channel and temporal, we call
it Pyramid×Pyramid Attention Cluster (PPAC).

3.1.3 Overall Architecture

For action classification, we extract multiple feature se-
quences from three modalities, including RGB, flow, au-
dio. We apply different Pyramid×Pyramid Attention to
each feature sequences separately. Then the outputs are

Model (%) Hit@1 Hit@3 mAP
Video-Level LSTM 93.9 99.2 97.1
Video-Level GRU 93.9 99.1 96.9

Segment-Level PPAC 94.2 99.2 97.2
Video-Level PPAC 94.6 99.3 97.5

Ensemble 95.5 99.5 97.9
Table 1. Action Classification Results on HACS validation split.

concatenated together as the multi-modal fused feature of
the video. Finally, a fully-connected layer is applied for
classification.

3.2. Experimental Results

Different kinds of segment-level features are extracted
using different backbone methods, i.e., TSN [11], I3D [2]
and TSM [5]. Backbone models are first pretrained on
Kinetics[2] and then fine tuned on HACS [13]. We set the
number of segments L to 32, channel pyramid level N to 4,
temporal pyramid level M to 3.

We combine ActivityNet [4] and HACS [13] dataset for
training. We merge the training and validation set of Ac-
tivitynet and the training set of HACS, and then remove the
video included in HACS testing set to construct our final
training set.

We train two types of action classification models, video
level and segment level. At the video level, the whole video
sequence is used as input for training. During prediction, we
random sample 10 video sequences evenly for each video,
and the result is averaged to get video level action classi-
fication result. For training segment level model, we use
the annotated segments of each action as inputs in training.
During prediction, top 10 predicted proposals are used as
inputs to predict segment level results, and then segment
level results are averaged to get the video level result.

We also train several other video-level sequence models
including LSTM and GRU [9]. The final action classifica-
tion result is the ensemble of all sequence models.The re-
sults are summarized in Table 1.

4. Post-Processing
First, we train several RapNet models based on audio,

optical flow and RGB images. Then, we use the results from
BMN models to decay the confidence score. Finally, we
apply the soft-NMS [1] algorithm to suppress the abundant
proposals. The Hyper-parameter alpha and threshold are set
as 0.3 and 0.5, respectively.

5. Experiments
5.1. Feature extraction

We adopt the TSM [5] in advance to encode the visual
content of an input video, where the RGB images are used



Modality AUC mAP (val)
Audio 40.65 15.89

Optical flow 61.87 34.01
TSM-K700 62.63 33.88
TSM-FT201 63.00 35.15
All features 64.79 36.86
Ensemble – 38.65

Table 2. The action detection performance of RapNet on different
feature modalities, shown in percentage.

to capture the appearance features and the optical flow im-
ages are employed to extract the motion features. In addi-
tion, we utilize the VGG to embed the audio information.
In order to obtain compact features, we compose snippets
sequence Ω = {ωi}T

′

i=1 of a given video, where each snip-
pet ωi with L frames and T ′ is the number of snippets. we
resize the length of each feature sequence from one video to
a fixed size (T=256) by linear interpolation before feeding
it into the RapNet.

5.2. Action localization

In this section, we will show the temporal action detec-
tion results of our RapNet on single modality, such as the
first four rows in Tab.2. Then, we concatenate all the modal-
ity (denoted as ”All features”) as input to feed it into the
RapNet and achieve the 36.86 map in validation. In our fi-
nal results, after fusion RapNet and BMN, we achieve 39.20
at validation set, and achieve 39.33 at testing set.
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