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Figure 1: Temporal Action Detection Framework. We take two branches to detect actions from a video. In the action localization
branch, we predict the action boundary with a confidence score. In the action classification branch, we classify the action from the entire
video. Combining the output of both branches, we can have the action boundary, class, and confidence.

Abstract

In this report, we present our solution for the HACS Tem-
poral Action Localization Challenge - Weakly-supervised
Learning Track. Temporal action localization is an impor-
tant yet challenging task in video analysis. Motivated by
previous works on this task, we designed a three-stage tem-
poral action detection framework. First, a backbone mod-
ule helps to enrich and align video features to each pro-
posal. Second, we build a proposal graph to predict ac-
tion boundaries. Third, we train a video classification net-
work. The final output is obtained by merging the proposal
score with the video scores. With the proposed solution, our
team achieved 23.54% average mAP on the HACS Chal-

lenge 2020, and can achieved 28.90% average mAP with
proper hyper-parameter settings.

1. Proposed solution

Our proposed solution is a three-stage temporal action
detection framework. It takes a video sequence as input and
predicts multiple scored candidate actions. First, we lever-
age a backbone module to enhance and align video features
to each proposal. Second, we create a proposal graph to pre-
dict action boundaries. Then we apply a video classification
network to predict the action classes for the proposals. The
whole framework is shown in Fig.[T}



1.1. Backbone Module

Our backbone module learns video representations and
is comprised of the following sequential modules.

First, the input sequence is passed through four convolu-
tional layers. These layers reduce the sequence temporal
resolution (for the computational efficiency in the subse-
quent layers). Then a layer of multiple dilated convolutions
with different dilation ratios aggregate temporal informa-
tion from different scales. Afterwards, a linear interpola-
tion layer followed by a convolutional layers upscales the
temporal resolution back.

1.2. Proposal Localization

Based on SGAlign [7]], we extract segments of features
from the video representations as proposals. The propos-
als in the same video are highly correlated and utilizing this
property can facilitate proposal recognition [4, |8]. Consid-
ering that instead of densely generating proposals, we sam-
ple and obtain sparse proposals, so grid operations such as
2D convolutions no longer apply. We use GCNs to model
proposal-proposal correlations the proposal classifier of our
framework.

In our GCN-based network, we represent each proposal
as a node, and proposals-proposal correlations as edges.
Notably, the edges here are constructed based on the tem-
poral correlations, which are formulated as the IoU between
two proposals.

1.3. Video Classification

The video-level class prediction has shown to be effec-
tive context to the temporal action detection problem.[S]]
We leverage TSM[3] for video classification. TSM pro-
poses a generic and effective Temporal Shift Module that
enjoys both high efficiency and high performance. Specifi-
cally, it can achieve the performance of 3D CNN but main-
tain 2D CNN’s complexity. TSM shifts part of the chan-
nels along the temporal dimension; thus facilitate infor-
mation exchanged among neighboring frames. Our video
classification model architecture follows Temporal Segment
Network[6], but the residual connections are equipped with
TSM.

1.4. Training and Inference

Training. We use the localization loss L., snippet
classification loss L5, and an Lo-norm regularization loss
L, for training the entire network, formulated as £ =
Lioe + Leis + AL where A denotes the weight decay. The
loss L, is used to determine the confidence scores of pro-
posals, while the loss L classify the video snippet as start,
end, or actions. In addition, in order to reduce the compu-
tation for training the GCN, we adopt the SAGE sampling
strategy suggested in [8]].

Inference. At inference time, we only run the localiza-
tion head to generate the score for each proposal. We con-

struct predicted actions ® = {¢; = (fs,j,fe,j7éj,pj)}j:1,
where (t; ;, . ;) refer to the predicted action boundaries, ¢;
is the predicted action class, and p; is the fused confidence
score of this prediction, computed as p; = p%;. - p,}ggo‘. In
our experiments, we search for the optimal « in each setup.
After that, we run soft non-maximum suppression (NMS)

and remove low-scored predictions.

2. Experiments
2.1. Action Classification

We finetune the TSM model on the HACS Segment
dataset. The TSM architecture is adopted from temporal
segment network, which takes ResNet50 as the backbone,
but shift the channel on the residual connections to involve
temporal information. The model is pretrained on kinetics-
600 and takes as input 8 video frames and predict action
class of the video.

The finetuning takes 25 epochs. The initial learning rate
is 0.001, then we reduced it by 10 on the 10th and 20th
epochs. We use the official training set to train the model
and save the model that reaches the best precision. In both
training and validation, we only use video-level annotations
— the action class of each video. Tab [I|shows model perfor-
mance on the validation set of HACS dataset.

Table 1: TSM model performance on the validation set
of HACS dataset.

Dataset ‘ Class Accuracy Prec@1 Prec@5
Kinetics-400 74.14% 74.12%  91.21%
HACS Segment 85.44% 8547%  98.01%

2.2. Action Localization

Video Feature We compare video feature extracted from
different models. (1) TSN feature: We extract the video
frames from HACS Segment dataset. Then we feed the
frames in the TSN model pretrained on Kinetics and save
the output from the last fully connect layer. (2) TSM fea-
ture: similar to TSN feature, we extract video feature from
our finetuned TSM model from Sec.2.1] Since the model is
finetuned on the dataset, we expect it to be more represen-
tative. (3) I3D feature: It is provided by HACS organizers.
The feature is from the global pooling layer of a I3D model
pretrained on Kinetics-400.

BSN experiment We compared TSN and TSM features on
BSN. We use the public BSN code to produce the action
proposals for HACS validation set, and evaluate them by the
average recall at top 1, top 100, and the averaged recall over



the curve (AUC), shown in Tab.[2] We also assign the pro-
posal class by the predicted video class, and evalute the de-
tection result by Average mAP over IoUs in [0.5:0.05:0.95],
shown in the last column of Tab. 2] Comparing the two
rows, the finetuned model doesn’t always produce better
video features for the proposal general and action detection
task. In our experiment, the pretrained model gives more
general video features and produces better model perfor-
mance.

Table 2: BSN model performance on the validation set of
HACS dataset.

Feature | AR@1 AR@100 AUC | mAP
TSN | 1224 5420  41.58 | 13.96
TSM | 11.64 4743 3626 | 1229

2.3. Experiment on our proposed solution.

we use the publicly available features extracted using an
I3D-50 [2]] model pre-trained on Kinetics-400 [2] and tem-
porally rescale them into 400 snippets.

We implement and test our framework using PyTorch
1.1, Python 3.7, and CUDA 10.0. In training, the learning
rates is 2E—3 on HACS-v1.1 for the first 7 epochs, and are
reduced by 10 for the following 8 epochs. In inference, we
leverage the global video context and take the video classi-
fication scores from action recognition model and [3]], and
multiply them by the confidence score for evaluation.

Tab. [3|compares our baseline method with representative
temporal action detectors. We report mAP at different tloU
thresholds, as well as average mAP.

Our method reaches 28.90% average mAP on the test set,
surpassing S-2d-TAN[9], the winner of HACS Challenge
2019, with a large margin.

Table 3: Action detection results on HACS-v1.1, mea-
sured by mAP (%) at different tloU thresholds and the av-

erage mAP. ‘> means the results are not provided in the
papers.

Method Validation Test

0.5 0.75 095 | Average | Average
SSN [10] | 28.82 18.80 5.32 18.97 16.10
BMN [ . . - - 22.10
S-2D-TAN [9] - - - - 23.49
ours* | 40.26 2696 8.08 27.01 23.54
ours | 43.33 29.65 6.23 29.24 28.90

* submission to the leader board.
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