
Learning Sparse 2D Temporal Adjacent Networks
for Temporal Action Localization

Songyang Zhang1,2 ∗ Houwen Peng2 Le Yang2 Jianlong Fu2 Jiebo Luo1

1University of Rochester 2Microsoft Research
szhang83@ur.rochester.edu,{houwen.peng,v-yale,jianf}@microsoft.com,jluo@cs.rochester.edu

Abstract

In this report, we introduce the Winner method for HACS
Temporal Action Localization Challenge 2019. Temporal
action localization is challenging since a target proposal
may be related to several other candidate proposals in an
untrimmed video. Existing methods cannot tackle this chal-
lenge well since temporal proposals are considered individ-
ually and their temporal dependencies are neglected. To
address this issue, we propose sparse 2D temporal adja-
cent networks to model the temporal relationship between
candidate proposals. This method is build upon the recent
proposed 2D-TAN approach [6]. The sampling strategy in
2D-TAN introduces the unbalanced context problem, where
short proposals can perceive more context than long pro-
posals. Therefore, we further propose a Sparse 2D Tempo-
ral Adjacent Network (S-2D-TAN). It is capable of involv-
ing more context information for long proposals and further
learning discriminative features from them. By combining
our S-2D-TAN with a simple action classifier, our method
achieves a mAP of 23.49 on the test set, which win the first
place in the HACS challenge.

1. Methodology

Our framework is inspired from the concept of 2D Tem-
poral map [6], which is originally designed for the moment
localization with natural language task. We extend this con-
cept to the temporal action localization task. The core idea
is to design a 2D temporal map, where one dimension in-
dicates the starting time of a proposal and the other indi-
cates the end time, as shown in Figure 1. In the following,
we introduce our proposed Sparse 2D Temporal Adjacent
Network approach. This approach consists of four steps:
video representation, proposal generation, action classifica-
tion, and score fusion. Figure 2 shows the framework of the
proposed S-2D-TAN approach.
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Figure 1. Examples of localizing actions in an untrimmed video.
In the two-dimensional temporal map, the black vertical and hor-
izontal axes represent the start and end frame indices while the
corresponding gray axes represent the corresponding start and end
time in the video. The values in the 2D map, highlighted by red
color, indicate the overlapping scores between the candidate pro-
posals and the target proposal. Here, τ is a short duration deter-
mined by the video length and sampling rate.

1.1. Video Representation via 2D Temporal Feature
Map

In this section, we extracts the features from the input
video stream via slowfast network [2] and then encodes the
features to a 2D Temporal Feature Map (see 2D-TAN [6]
for more details.). Since extracting features for all possible
proposals on the map is time consuming, we also follow the
same sampling strategy in 2D-TAN [6], where short pro-
posals are densely selected and long proposals are sparsely
selected as candidates. In order to reduce the redundant
max operations and number of parameters, we stack max-
pooling layers to extract proposal features, similar to the
stacked convolutions in previous work [5, 4].
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Figure 2. The framework of our proposed Sparse 2D Temporal Adjacent Network. It consists of a 2D temporal feature map extractor for
video representation and a temporal adjacent network for proposal generation. Blue boxes represent the proposals we select and the gray
boxes represent the proposals that are not selected. All the transparent boxes represent the invalid proposals. Blue boxes with violet ,
orange and green margins represent short, medium and long proposals we selected.

1.2. Proposal Generation via Sparse 2D Temporal
Adjacent Network

In this section, we predict the possibility of candidate
proposals overlapping with the target proposals. The origi-
nal 2D-TAN network is simple and only consists of several
convolution layers. When the convolution is operated, in-
valid proposals are not involved in the computation. How-
ever, this design ignore the effects of different number of
context proposals: short proposals perceive more context
proposals (e.g. red dashed box) compared to long proposals
(e.g. yellow dashed box), as shown in Figure 2. In contrast,
we rearrange the original sparse feature map into three com-
pact sub feature maps and separately feed them to a shared
convolution network. More details are shown as following:

Let a proposal start from i-th clip to j-th clip and its
length lij = j − i+ 1.

• For short proposals that satisify lij ≤ N
4 , we enumer-

ate all possible proposals as candidates and rearrange
them to a new feature map of size N ×N .

• For medium proposal that satsify N
4 < lij ≤ N

2 , we se-
lect them with stride 2 and rearrange them into a com-
pact map of size 3N

8 ×
3N
8 .

• For long proposal that satsify N
2 < lij ≤ N , we select

them with stride 4 and rearrange them into a compact
map of size N

8 ×
N
8 .

These three compact feature maps are then separately fed
into a shared convolution network. For each map, we keep
the input and output sizes same by using zero padding. The

outputs are then recovered to a feature map. The recov-
ered locations are based on its corresponding location in the
original map before the rearrangement.

Finally, we predict the overlapping scores of proposals
on the 2D temporal map. The output feature of sparse
temporal adjacent network are passed through a fully con-
nected layer and a sigmoid function. The output value
Pover ∈ RN×N×1 indicates the possibility of the proposal
contains pre-defined actions.

For the loss function, we adapt a soft binary cross en-
tropy loss [6] with two IoU thresholds tmin and tmax for
training. Noted that only valid proposals on the map are
involved during loss computation and inference.

1.3. Action Classifier

In this section, we independently train an action classi-
fier which predict the class label from a given proposal. In
more details, we select proposals that have IoU larger than
0.5 with ground truth as training samples and mark all the
other as invalid. Their proposal features are obtained same
as section 1.1. Without any convolution layers, the proposal
features goes through a fully connected layer and a softmax
layer to obtain the classification scores Pclass ∈ RN×N×C ,
where C is the total number of classes. If there are multi-
ple actions involved in one proposal, we choose the action
with highest IoU as its label. Cross-entropy loss is used for
training.

1.4. Score Fusion

In this step, we predict the final detection results. Fol-
lowing Lin et al. [4], the final score is computed by mul-



Row# Model
Parameters

Number of Layers AR@100 AUCNumber of Number of Kernel SizeMax-Pooling Layers Clips
1 S-2D-TAN 128 256 9 4 67.25 62.40
2 2D-TAN 128 128 9 4 63.25 58.11
3 2D-TAN 64 64 9 4 55.24 50.40
4 2D-TAN 64 64 1 1 49.85 42.32

Table 1. Ablation Study for the proposal generation. Experiments are conducted on the HACS validation set. AR@100 and AUC follows
the same definition in ActivityNet [1].

tiplying the overlapping score and classification score, as
shown in the following:

Pfinal = PoverPclass ∈ RN×N×C (1)

We then apply Non-maximum-suppression (NMS) to Pfinal

and obtain the final predictions.

2. Experiments
We evaluate our proposed method on the HACS valida-

tion set [7]. In this section, we first introduce our imple-
mentation details and then investigate the impact of differ-
ent factors through a set of ablation studies.

2.1. Implementation Details

Both the S-2D-TAN network and the classifier are opti-
mized by Adam [3] with learning rate of 1×10−3 and batch
size of 32. The size of all hidden states in the model is set
to 512. For S-2D-TAN network, a 4-layer convolution net-
work with kernel size of 9 is adopted, and non maximum
suppression (NMS) with a threshold of 0.5 is applied dur-
ing the inference. The scaling thresholds tmin and tmax

are set to 0.5 and 1.0. During our experiments, the num-
ber of sampled clips is set to 256, which means the map’s
spatial dimension is of size 256 × 256. We densely se-
lect all short proposals as candidates if the length is less
than 64. For proposals with medium length between 64
and 128, the sampling stride between candidates are in-
creased by 2. For long proposals with length above 128,
the sampling stride is further increased to 4. The network
has 64 + 64/2 + 128/4 = 128 stacked max-pooling layers
in total.

2.2. Experiment Results

In this section, we evaluate the effects of different fac-
tors. We can observe that by enlarging the receptive field,
the performance increase significantly (Row 3 v.s. Row 4).
If we keep the receptive field same and increasing the num-
ber of proposal candidates, the performance can get further
improvement (Row 2 v.s. Row 3). After adopting our pro-
posed sparse convolution strategy, the performance is fur-
ther improved (Row 1 v.s. Row 2). By combining the

best proposal generation model (Row 1) with a separately
trained classifier, we can achieve 23.49 mAP in the HACS
test set.

3. Conclusion
In this report, we extends the 2D-TAN approach to the

temporal action localization task. We also introduce a novel
Sparse 2D Temporal Adjacent Network (S-2D-TAN) to
handle the unbalanced context proposals. The performance
on HACS dataset has verify its effectiveness. In the future,
we will conduct more experiments on other datasets, like
ActivityNet, THUMOS to test our model’s performance.
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